Improving the Berlekamp Algorithm for Binomials x n - a

نویسندگان

  • Ryuichi Harasawa
  • Yutaka Sueyoshi
  • Aichi Kudo
چکیده

In this paper, we describe an improvement of the Berlekamp algorithm for binomials xn−a over prime fields Fp. We implement the proposed method for various cases and compare the results with the original Berlekamp method. The proposed method can be extended easily to the case where the base field is not a prime field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New permutation codes using Hadamard unscrambling

Another viewpoint is presented on the derivation of theBerlekamp-Massey algorithm. Our approach differs from previous ones inthe following manner. The properties of the shortest linear feedback shiftregister that generates a given sequence are first derived without referenceto the Berlekamp-Massey algorithm. The Berlekamp-Massey algorithm isthen derived using these propertie...

متن کامل

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

The Berlekamp-Massey Algorithm and the Euclidean Algorithm: a Closer Link

The two primary decoding algorithms for Reed-Solomon codes are the Berlekamp-Massey algorithmand the Sugiyama et al. adaptation of the Euclidean algorithm, both designed to solve a key equation. In this article an alternative version of the key equation and a newway to use the Euclidean algorithm to solve it are presented, which yield the Berlekamp-Massey algorithm. This results in a new, simpl...

متن کامل

When is a polynomial ideal binomial after an ambient automorphism?

Can an ideal I in a polynomial ring k[x] over a field be moved by a change of coordinates into a position where it is generated by binomials x − λx with λ ∈ k, or by unital binomials (i.e., with λ = 0 or 1)? Can a variety be moved into a position where it is toric? By fibering the G-translates of I over an algebraic group G acting on affine space, these problems are special cases of questions a...

متن کامل

From the Euclidean Algorithm for Solving a Key Equation for Dual Reed-Solomon Codes to the Berlekamp-Massey Algorithm

The twoprimary decoding algorithms forReed-Solomon codes are the Berlekamp-Massey algorithm and the Sugiyama et al. adaptation of the Euclidean algorithm, both designed to solve a key equation. This article presents a new version of the key equation and a way to use the Euclidean algorithm to solve it. A straightforward reorganization of the algorithm yields the Berlekamp-Massey algorithm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009